Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints
نویسندگان
چکیده
منابع مشابه
Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints
Vector valued data appearing in concrete applications often possess sparse expansions with respect to a preassigned frame for each vector component individually. Additionally, different components may also exhibit common sparsity patterns. Recently, there were introduced sparsity measures that take into account such joint sparsity patterns, promoting coupling of non-vanishing components. These ...
متن کاملHeterogeneous multitask learning with joint sparsity constraints
Multitask learning addresses the problem of learning related tasks whose information on parameters is assumed to be shared with each other. Previous approaches usually deal with homogeneous tasks such as a set of regression tasks only or a set of classification tasks only. In this paper, we consider the problem of learning multiple related tasks, where tasks consist of predicting both continuou...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملAn Iterative Algorithm with Joint Sparsity Constraints for Magnetic Tomography
Magnetic tomography is an ill-posed and ill-conditioned inverse problem since, in general, the solution is non-unique and the measured magnetic field is affected by high noise. We use a joint sparsity constraint to regularize the magnetic inverse problem. This leads to a minimization problem whose solution can be approximated by an iterative thresholded Landweber algorithm. The algorithm is pro...
متن کاملFaithful Recovery of Vector Valued Functions from Incomplete Data
On March 11, 1944, the famous Eremitani Church in Padua (Italy) was destroyed in an Allied bombing along with the inestimable frescoes by Andrea Mantegna et al. contained in the Ovetari Chapel. In the last 60 years, several attempts have been made to restore the fresco fragments by traditional methods, but without much success. We have developed an efficient pattern recognition algorithm to map...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2008
ISSN: 0036-1429,1095-7170
DOI: 10.1137/0606668909